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Introduction

Neural codecs have demonstrated significant success in audio pro-
cessing by transforming continuous waveforms into discrete to-
kens. Originally developed to reduce transmission latency, these
tokenized representations have proven particularly valuable in en-
abling natural language processing-inspired approaches to con-
tinuous signal data, while also providing efficient storage solu-
tions for large datasets. Recent models like Meta’s AudioGen2

and MusicGen3 have shown how such tokenized representations
can serve as effective building blocks for complex audio genera-
tion and manipulation tasks. We introduce EQcodec, an adapta-
tion of Meta AI’s Encodec1 architecture for seismic signal anal-
ysis. Using residual vector quantization, our model converts
seismic waveforms into discrete tokens while preserving essential
signal characteristics across different quantization levels. Our
results demonstrate the model’s ability to encode seismic sig-
nals at varying levels of discretization, each representing dif-
ferent degrees of information content. Initial experiments indi-
cate these compressed representations can improve performance
on analytical tasks while significantly reducing storage require-
ments. These preliminary results motivate further investigation
into new analytical approaches in seismological data analysis,
such as transformer-based architectures for time series analysis
and predictive deconvolution.

Earthquake Data Compression with EQcodec: Demo
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Reconstructed Signal (80 bits/s, Level 8)
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Reconstructed Signal (70 bits/s, Level 7)
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Reconstructed Signal (60 bits/s, Level 6)
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Reconstructed Signal (50 bits/s, Level 5)
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Reconstructed Signal (40 bits/s, Level 4)

Reconstructed Signal

0 50 100 150 200 250 300 350 400

−0.5

0.0

0.5

A
m

p
li

tu
d

e

Reconstructed Signal (30 bits/s, Level 3)
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Reconstructed Signal (20 bits/s, Level 2)
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Earthquake Signal Reconstruction at Different Quantization Levels using EQcodec

Sample Rate: 40 Hz, Token Frame: 1 second

• Training and testing were performed on single-channel earth-
quake signals sampled at 40 Hz, with all component traces
from 49.8 GiB of training data and 13.1 GiB of test data split
into individual channels.

• Figure on left demonstrates how EQcodec progressively com-
presses seismic waveforms through residual vector quantiza-
tion using 8 codebooks on a randomly chosen test set trace.

• The original signal (top) is sampled at 40 Hz with 32-bit
precision, yielding 1280 bits/s.

• Below are reconstructions using progressively fewer code-
books, with bit rates decreasing from 80 to 10 bits/s (levels
8 to 1, corresponding to the number of codebooks used).

• For every 1-second segment (40 samples), there is a token
frame, the number of tokens being the number of codebook
levels.

• The visualization reveals how different quantization levels
balance data reduction against signal fidelity in the encoded
seismic waveforms.

Reconstruction Error Metrics across Quantization Levels

Compression
Level

MSE (Mean ±
Std) ×10−3

MAE (Mean ±
Std) ×10−2

1 16.1 ± 125.6 82.3 ± 52.6
2 4.56 ± 97.5 35.2 ± 37.1
3 2.75 ± 87.1 22.5 ± 32.4
4 2.11 ± 79.1 17.2 ± 29.8
5 1.83 ± 75.3 14.1 ± 28.7
6 1.66 ± 69.8 12.3 ± 27.6
7 1.57 ± 66.9 11.2 ± 27.1
8 1.51 ± 64.8 10.5 ± 26.9

Compression Ratio as a Function of Quantization Level

Codebook
Levels

Bits per
Frame

Bits per
Second

Compression
Ratio

1 10 10 128.00
2 20 20 64.00
3 30 30 42.67
4 40 40 32.00
5 50 50 25.60
6 60 60 21.33
7 70 70 18.29
8 80 80 16.00

Residual Vector Quantization

Vector quantization (VQ) is a technique that maps continuous-
valued vectors to a finite set of representative values. Residual
Vector Quantization (RVQ) extends this concept by quantizing
data in multiple stages using codebooks - collections of reference
vectors called centroids. The process works as follows:

• In the first stage, input vector x is approximated by its
nearest centroid: x̂1 = q1(x)

• The first residual r1 = x− x̂1 is quantized using a second
codebook: x̂2 = q2(r1)

• Subsequent stages follow the pattern ri = ri−1−x̂i, each
refining the previous approximation

• The final reconstruction is the sum of all quantized vec-
tors: x̂ =

∑
i
x̂i

This sequential refinement strategy allows RVQ to achieve high
compression rates while maintaining good reconstruction quality,
making it particularly effective for neural compression tasks.

Data Points
Centroids

Original Vector
Quantized Approximation

The EQcodec Architecture

The EQcodec architecture is a direct adaptation of Meta AI’s En-
codec model, originally designed for audio compression, now repur-
posed for seismic waveform compression. The architecture consists
of an encoder-decoder framework with a quantizer in between. Key
components and parameters:

• Encoder: Uses strided convolutions followed by LSTM layers

• Decoder: Uses LSTM layers followed by transposed convolu-
tions

• Downsampling: Total downsampling factor of 40 between in-
put and latent space

• Dimension: Uses 32-dimensional latent space for encoding
seismic features

• Quantization: Implements Residual Vector Quantization
(RVQ) with 8 codebooks and 1024 centroids per codebook

• Sampling Rate: Trained over 40Hz seismic data

The discriminator uses a multi-scale STFT approach with three par-
allel discriminators operating at FFT sizes of 128, 64, and 32 points
to ensure robust adversarial training across various frequency scales
of the seismic signal. The model is trained using multiple objectives:

• Reconstruction losses (ℓt and ℓs) in both time and spectral
domains

• Adversarial losses for generator (ℓg) and discriminator (ℓd)

• Commitment loss (ℓw) from the residual vector quantization

Seismic Waveform Infilling Experiments

We design a waveform infilling task, which requires understanding signal con-
text to reconstruct missing portions, to evaluate learned seismic represen-
tations. We compare our quantized approach against traditional baselines
including Temporal CNN, Bi-LSTM, and vanilla Transformer architectures.
Unlike the baselines that work directly with raw waveforms, the EQcodec
variants first encode the seismic data into discrete embeddings using different
quantization levels (2, 4, and 8 codebooks) before feeding them to the Trans-
former model. Results show progressive improvement in reconstruction quality
with increasing number of codebooks, with the 8-level EQcodec achieving the
best performance (MSE: 0.616, MAE: 0.484). Visual comparisons demonstrate
superior reconstruction of the masked regions, particularly in preserving the
waveform characteristics.

Test Set Performance Metrics of Different Models
in Infilling Task

Model MSE Loss MAE Loss

Temporal CNN 1.560 0.836
Bi-LSTM 0.983 0.663
Transformer (TF) 0.987 0.659
EQcodec (2 Levels) + TF 0.854 0.604
EQcodec (4 Levels) + TF 0.748 0.548
EQcodec (8 Levels) + TF 0.616 0.484

Infilling Results on a Representative Test Trace
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Bidirectional LSTM
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EQcodec-Transformer (2 Codebook Levels)
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Practical Implications and What’s Next?

• Modern seismic networks generate massive datasets that
strain storage and network infrastructure

• Our approach enables efficient storage and transfer while
preserving signal quality

• Makes large-scale seismic analysis accessible to institutions
with limited resources

• Compressed representations can be effectively integrated
into deep learning workflows

• Create an open-source EQcodec trained on large-scale
global seismic datasets, enabling widespread adoption
within the seismological community

• Explore applications of recent deep learning advances to
seismological analysis through these tokenized representa-
tions, such as predictive deconvolution and other analysis
tasks.
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